353. The Dipole Moments and Structures of Some Quinoline Derivatives, and the Orientation of Claus and Hoffmann's x-Nitroisoquinoline.

By Catherine G. Le Fèvre and Raymond J. W. Le Fèvre.

In this section measurements of the dipole moments of a number of quinoline derivatives are recorded and discussed in relation to the possible influence of substitution upon the structure of the quinoline skeleton. Little relevant physical evidence is available in the literature.

Results.-The molecular polarisations and refractivities at infinite dilution in benzene solutions of quinoline and seven derivatives at 25° are shown in Table I; from these data the dipole moment in each case (col. 4) has been calculated. The published values for the dipole moment (in Debye units here and throughout) of quinoline are : $2 \cdot 18$ (Le Fèvre and Smith, J., 1932, 2810) ; $2 \cdot 25$ (Rolinski, Physikal. Z., 1928, 29, 658) ; $2 \cdot 14$ (Bergmann, Engel, and Meyer, Ber., 1932, 65, 446) ; the present work supports the first value. The data for quinaldine are those of Rau and Narayanaswamy (Z. physikal. Chem., 1934, $B, \mathbf{2 6}, 23$).

Table I.

	Mol. poln.,	Mol. refrty.,	
Substance.	c.c.	c.c.	$\mu \times 10^{18}$.
Quinoline $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.	$141 \cdot 1$	$41 \cdot 9$	$2 \cdot 19$
Quinaldine $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.	$122 \cdot 2$	$50 \cdot 7$	$1 \cdot 86$
*6-Methylquinoline $\ldots \ldots \ldots \ldots \ldots \ldots$.	$156 \cdot 2$	$46 \cdot 3$	$2 \cdot 31$
p-Toluquinaldine $\ldots \ldots \ldots \ldots \ldots$.	$134 \cdot 4$	$51 \cdot 5$	$2 \cdot 00$
$2: 4$-Dimethylquinoline $\ldots \ldots \ldots \ldots$.	$160 \cdot 6$	$51 \cdot 5$	$2 \cdot 30$
*5-Nitroquinoline $\ldots \ldots \ldots \ldots \ldots \ldots$.	$184 \cdot 4$	$49 \cdot 8$	$2 \cdot 55$
*6-Nitroquinoline $\ldots \ldots \ldots \ldots \ldots \ldots$.	$389 \cdot 1$	$49 \cdot 2$	$4 \cdot 12$
*8-Nitroquinoline $\ldots \ldots \ldots \ldots \ldots \ldots$.	$713 \cdot 0$	$47 \cdot 8$	$5 \cdot 67$

By treating the observed moments of the substituted quinolines as the vector sums of the moments of quinoline and its substituents, the former of which is known as to magnitude and the latter as to magnitude and direction (we have taken $\mathrm{Me}=0.37, \mathrm{NO}_{2}=4 \cdot 0$, and 2:4-dimethyl as equivalent to 3 -methyl), it is evidently possible to calculate the one unknown quantity, viz., the direction of the moment of quinoline. This has been done, the results being tabulated below as inclinations (counterclockwise denoted by +) to the $[(4)-\longrightarrow(1)]$ direction :

$$
\begin{array}{cccccc}
2-\mathrm{Me} . & 6-\mathrm{Me} . & 2: 4-\mathrm{Me}_{2} . & 5-\mathrm{NO}_{2} . & 6-\mathrm{NO}_{2} . & 8-\mathrm{NO}_{2} . \\
+35.5^{\circ} & -15 \cdot 5^{\circ} & +17^{\circ} . & \pm 35 \cdot 5^{\circ} & -17 \cdot 5^{\circ} & \pm 49 \cdot 5^{\circ}
\end{array}
$$

Of the two possible signs for the 5 - and the 8 -nitro-derivative, the negative is considered the more correct, by analogy with the 6 -nitro-compound, for which there is no ambiguity.

Discussion.--The real structure of any given quinoline compound might be expected,

(I.)

(Ia.)

(II.)
 in conformity with recent theory (Ingold, Chem. Revs., 1934, 15, No. 2), to lie between two extreme forms corresponding in structures to the types (I) or ($\mathrm{I} a$) and (II). These would constitute the unreal unperturbed forms from which could arise the real and most stable form by
valency exchange degeneracy.
With the aid of the angles now deduced we can assign, qualitatively, the compounds marked with an asterisk in Table I to their places between the extreme types because, in the above two formula types, the $-\mathrm{C}: \mathrm{N}-$ and $-\mathrm{C}-\mathrm{N}$: links should have sensibly different moments towards the nitrogen atom, the first having the greater; and accordingly, in those compounds where the quinoline component moment has an apparent clockwise inclination to the vertical direction (cf. negative signs to above angles), we infer that a quinoline skeleton of type (I) or (Ia) exists predominantly. A complete decision cannot be made with certainty, but the marked resemblances between quinoline and naphthalene (orientation
phenomena, parallelism of the dipole moments of quinoline and isoquinoline with α - and β naphthalene derivatives; cf. Le Fèvre and Smith, loc. cit.; Parts, Z. physikal. Chem., 1930, 10, $B, 264$) definitely favour (I). Naphthalene is commonly assumed to have the two quaternary carbon atoms united by a double bond, a formulation supported by dipolemoment measurements, for this hydrocarbon has a zero moment and must therefore, in the isolated state, contain a symmetrical arrangement of bonds [cf. (I)]: a structure of type ($\mathrm{I} a$) would imply a moment of the order of that found for phenanthrene. The present conclusion in the case of quinoline agrees, as far as the heterocyclic ring is concerned, with that reached by Mills and Smith (J., 1922, 121, 2724) from chemical considerations.

Mesomerism.-Alternatively, the inconstancy of our inclination angle values may be a measure of the departure from true vector additivity of dipole moments occurring in this group of compounds by the operation of " mesomeric " effects (Ingold, J., 1933, 1120) ; e.g., with 5 -substituted quinolines little abnormality is to be expected, in contrast to the 6 - or 8 -analogues, which constitutionally resemble p - and o-nitroanilines respectively, and so should similarly display permanent polarisation increments produced by the mechanism of the tautomeric effect. These have been fully discussed by Höjendahl, Sutton, and others (for, references see Ingold, Chem. Revs., loc. cit.) and are of obvious application to the present cases.

2-Methylquinoline and its 4- and 6-Methyl Derivatives.-Quinaldine and 2:4-dimethylquinoline have inclination angles which are in contrast with those derived from the other compounds. In the α-methylated quinolines the possibility arises of dynamic isomerism of the type $-\mathrm{N}: \stackrel{\mathrm{C}}{\mathrm{C}}-\mathrm{CH}_{3} \rightleftharpoons-\mathrm{NH}-\mathrm{C}: \mathrm{CH}_{2}$ and their abnormality is probably to be ascribed to this cause. For this reason we prefer not to apply to the apparent angle values the argument used above, which would indicate the existence of a basal structure of type (II), although such a conception is quite in harmony with the zero moment found by Snoek (Physikal. Z., 1934, 35, 196) for 2 : 3-dimethylquinoxaline (III). As an indication of the significance of such tautomerism in the interpretation of the second and fifth measure-
(III.)

ments (Table I), we have examined 2: 6-dimethylquinoline (IV). By symmetry, if (IV) were correct, the Me-C moments should be identical and in antiparallel alinement. The resultant therefore should equal that of quinoline itself, viz., $2 \cdot 19$; experimentally it is found to be $2 \cdot 00$.

Conclusions.-It is concluded that in the quinoline derivatives examined, except the α-methyl-containing compounds, the mobilities, typical of benzene and pyridine, of the single and double linkings are so diminished by ring fusion that the skeleton is best formulated as (I), and that the component electric moment, arising from this structure, acts along directions varying from 15° to 50° to the axis of the $5: 8$-carbon atoms, to meet it at some point outside the molecule on the side of the 8 -carbon atom.

Experimental.

Preparation of Materials.-The benzene used was commercial pure material, redistilled and recrystallised, etc., as detailed by Le Fèvre and Smith (J., 1932, 2239).

Quinoline. The commercial " pure " base was fractionated (column), the intermediate onethird, b. p. 238-238. $5^{\circ} / 759 \mathrm{~mm}$., being kept over solid potash for a day and then redistilled.

6-Methylquinoline was prepared from p-toluidine by Skraup's method (Monatsh., 1881, 2, 158), a sample of b. p. $258-260^{\circ} / 760 \mathrm{~mm}$. being employed.
p-Toluquinaldine, obtained from p-toluidine, paraldehyde, and hydrogen chloride (Döbner and Miller, Ber., 1883, 16, 2470), had m. p. 60°, b. p. 265-267 .

2: 4-Dimethylquinoline, prepared from acetylacetone, aniline, and sulphuric acid (Roberts and Turner, J., 1927, 1842), was redistilled; b. p. $264-265^{\circ} / 758 \mathrm{~mm}$.

5-Nitroquinoline. This was prepared directly from quinoline by nitration, since the synthetic product from m-nitroaniline is liable to be admixed with the 7 -isomeride. To quinoline (50 g .), nitric acid ($20 \mathrm{c} . \mathrm{c}$., $d \mathbf{1} 5$) was added slowly at 0°. The solid cake formed (75 g .) was powdered and added in five portions to concentrated sulphuric acid (50 c.c., kept at 0°), a small quantity of fuming sulphuric acid ($d 2 \cdot 0,10 \mathrm{c} . c$.) being run in after each addition. Dilution and neutralisation (caustic soda solution) produced an oil, which solidified over-night. This was dissolved in much hot water (with some dilute nitric acid), and the clear filtrate saturated with sodium acetate. After a time the precipitated 5 -nitroquinoline was separated, washed, etc., and finally crystallised from light petroleum; it formed white needles (32 g.), m. p. 72 ${ }^{\circ}$. Complete neutralisation of the nitration solution led to 8 -nitroquinoline (9 g.), which, after crystallisation from dilute alcohol, had m. p. 88-89 ${ }^{\circ}$.

6-Nitroquinoline. This substance was made by the usual Skraup synthesis from arsenic acid (116 g.), concentrated sulphuric acid (220 g .), glycerol (240 g .) , and p-nitroaniline (112 g .) . After $2 \frac{1}{2}-3$ hours' heating, the whole was strongly diluted with water and left over-night. Sodium hydroxide solution was added to the filtrate from this, a mass of impure 6-nitroquinoline being obtained. Separation and dissolution of the mass in hydrochloric acid (norit) afforded, on saturation with ammonia, crystalline 6-nitroquinoline; recrystallisation from dilute alcohol (norit) finally gave the pure substance (98 g.), m. p. $148-149^{\circ}$.

8 -Nitroquinoline. This was similarly obtained (arsenic acid, $51.5 \mathrm{~g} . ;$ sulphuric acid, 100 g.; glycerol, $110 \mathrm{~g} . ;$ o-nitroaniline, 50 g .). The highly diluted reaction mass was clarified, and neutralised with sodium hydroxide solution; after 1 hour the brown flocky precipitate was filtered off and crystallised from dilute alcohol (norit) ; m. p. $88-89^{\circ}$ (45 g .).

Measurements.-The dielectric constants of dilute solutions of the above compounds in benzene were determined by the resonance method described previously (loc. cit.). These measurements were made at 25° and in one case at 45°. The refractive indices of the same solutions were determined at 25° and for the Na_{D} line with a Pulfrich refractometer. The

$f_{1} \cdot 10^{6}$	0
$M_{1} f_{1}+M_{2} f_{2}$	78
ϵ	2.2725
d	$0 \cdot 8738$
$P_{1} f_{1}+P_{2} f_{2}$	26.585
$P_{2} f_{2}$	26.585
$P_{1} f_{1}$	-
P_{1}	-

Quinoline in benzene at 25°.

Whence extrapolated value of P_{1} for $f_{1}=0$ is $141 \cdot 1$ c.c.; $\left[R_{L}\right]_{\mathrm{D}}=41 \cdot 9$ c.c.; therefore $\mu=$ $0 \cdot 22 \sqrt{141 \cdot 1-41 \cdot 9}=2 \cdot 19$.

6-Methylquinoline in benzene at 25°.

$f_{1} \cdot 10^{6}$	0	16149.4	$25013 \cdot 9$	$32733 \cdot 8$	$43448 \cdot 0$
$M_{1} f_{1}+M_{2} f_{2}$	78	$79 \cdot 0496$	$79 \cdot 6259$	$80 \cdot 1277$	80.8241
ϵ	$2 \cdot 2725$	$2 \cdot 4014$	$2 \cdot 4730$	$2 \cdot 5341$	$2 \cdot 6207$
d	0.87380	0.87863	$0 \cdot 88113$	0.88341	$0 \cdot 88647$
$P_{1} f_{1}+P_{2} f_{2}$	26.5863	$28 \cdot 6461$	29.7590	$30 \cdot 6890$	31.9795
$P_{2} f_{2} \ldots \ldots$.	26.5863	$26 \cdot 1569$	$25 \cdot 9213$	$25 \cdot 7160$	25.4312
$P_{1} f_{1}$	-	$2 \cdot 4892$	$3 \cdot 8377$	$4 \cdot 9730$	6.5483
P_{1}	-	$154 \cdot 14$	$153 \cdot 42$	151.92	150.72

Whence extrapolated value of P_{1} for $f_{1}=0$ is $156 \cdot 2$ c.c.; $\left[R_{L}\right]_{\mathrm{D}}=46.3$ c.c. (Auwers and Kraul, loc. cit.) ; therefore $\mu=0.22(109 \cdot 9)^{\frac{1}{2}}=2 \cdot 31$. Also, $2.31=\left(2 \cdot 19^{2}+0.37^{2} \pm 2 \times 2.19 \times 0.37 \cos \theta\right)^{\frac{1}{2}}$, whence $\cos \theta=0 \cdot 2487$, and $\theta=75 \cdot 6^{\circ}$.
p-Toluquinaldine in benzene at 25°.

$f_{1} \cdot 10^{6}$	0	$6751 \cdot 6$	$10184 \cdot 3$	$17717 \cdot 0$	19714.0
$M_{1} f_{1}+M_{2} f_{2}$	78	78.5334	78.8046	$79 \cdot 3996$	79.5575
ϵ	$2 \cdot 2725$	$2 \cdot 3136$	$2 \cdot 3344$	$2 \cdot 3812$	$2 \cdot 3930$
d	0.87380	$0 \cdot 87564$	0.87654	0.87862	0.87917
$P_{1} f_{1}+P_{2} f_{2}$	26.5863	27.3119	27.6782	28.4892	28.6945
$P_{2} f_{2} \ldots \ldots \ldots .$.	26.5863	26.4068	26.3155	26.1153	26.0622
$P_{1} f_{1}$	-	$0 \cdot 9051$	$1 \cdot 3627$	$2 \cdot 3739$	$2 \cdot 6323$
P_{1}	-	$134 \cdot 06$	$133 \cdot 81$	133.99	133.52

Whence extrapolated value of P_{1} for $f_{1}=0$ is $134 \cdot 4$ c.c.; $\left[R_{L}\right]_{\mathrm{D}}=51.5$ c.c. (Auwers and Kraul, loc. cit.) ; therefore $\mu=0.22(82 \cdot 9)^{\frac{1}{2}}=2 \cdot 00$.

2:4-Dimethylquinoline in benzene at 25°.

$f_{1} \cdot 10^{6}$	0	$23054 \cdot 5$	$25185 \cdot 2$	55016.8	$84043 \cdot 1$
$M_{1} f_{1}+M_{2} f_{2}$	78	79.8213	79.9897	$82 \cdot 3463$	$84 \cdot 6395$
ϵ	$2 \cdot 2725$	$2 \cdot 4607$	$2 \cdot 4737$	$2 \cdot 7145$	$2 \cdot 9527$
d	$0 \cdot 87380$	$0 \cdot 88062$	$0 \cdot 88122$	$0 \cdot 88955$	$0 \cdot 89765$
$P_{1} f_{1}+P_{2} f_{2}$	26.5863	29.6817	29.9014	$33 \cdot 6648$	37-1757
$P_{2} f_{2} \ldots \ldots$.	$26 \cdot 5863$	25.9733	$25 \cdot 9167$	$25 \cdot 1236$	$24 \cdot 3519$
$P_{1} f_{1}$	-	$3 \cdot 7084$	$3 \cdot 9847$	8.5412	12.8238
$P_{1} \quad \ldots \ldots \ldots$	-	$160 \cdot 85$	$158 \cdot 22$	$155 \cdot 25$	152.59

Whence extrapolated value of P_{1} for $f_{1}=0$ is 160.6 c.c.; $\left[R_{L}\right]_{\mathrm{D}}=51.5$ c.c. (Auwers and Kraul, Z. physikal. Chem., 1925, 116, 438) ; therefore $\mu=0 \cdot 22(109 \cdot 1)^{\frac{1}{2}}=2 \cdot 30$. Also, $2 \cdot 30=\left(0 \cdot 37^{2}+2 \cdot 19^{2} \pm\right.$ $2 \times 0.37 \times 2.19 \cos \theta)^{\frac{1}{2}}$, whence $\cos \theta=0.2203$, and $\theta=77^{\circ}$.

5-Nitroquinoline in benzene at 25°.

$f_{1} \cdot 10^{6}$	0	1066.82	$2800 \cdot 42$	$3502 \cdot 14$	$4568 \cdot 90$
$M_{1} f_{1}+M_{2} f_{2}$	78	$78 \cdot 1024$	$78 \cdot 2688$	$78 \cdot 3362$	$78 \cdot 4386$
ϵ	$2 \cdot 2725$	$2 \cdot 2831$	$2 \cdot 3005$	$2 \cdot 3075$	$2 \cdot 3180$
d	$0 \cdot 8738$	$0 \cdot 87457$	$0 \cdot 87577$	$0 \cdot 87625$	$0 \cdot 87699$
$P_{1} f_{1}+P_{2} f_{2}$	26.585	26.7532	$27 \cdot 0264$	$27 \cdot 1366$	$27 \cdot 2998$
$P_{2} f_{2} \ldots \ldots . .$.	26.585	26.5566	26.5105	26.4919	26.4635
$P_{1} f_{1}$	-	0•1966	0.5159	$0 \cdot 6447$	$0 \cdot 8363$
P_{1}	-	$184 \cdot 27$	$184 \cdot 22$	$184 \cdot 10$	183.04
n	$1 \cdot 49733$	$1 \cdot 49764$	$1 \cdot 49813$	-	-
n^{2}	$2 \cdot 24199$	$2 \cdot 24293$	$2 \cdot 24439$	-	-
$R_{1} f_{1}+R_{2} f_{2}$	$26 \cdot 13565$	$26 \cdot 16085$	$26 \cdot 20218$	-	-
$R_{2} f_{2} \ldots \ldots \ldots$.	$26 \cdot 13565$	$26 \cdot 10782$	$26 \cdot 06250$	-	-
$R_{1} f_{1}$		0.05303	$0 \cdot 13968$	-	-
R_{1}.	-	$49 \cdot 7$	$49 \cdot 8$	-	-

Whence extrapolated value of P_{1} for $f_{1}=0$ is $184 \cdot 4$ c.c.; $\left[R_{L}\right]$ d $=49.8$ c.c.; therefore $\mu=0.220$ $(184 \cdot 4-49 \cdot 8)^{\frac{1}{2}}=2.55$. Also, $2 \cdot 55=\left(4^{2}+2 \cdot 19^{2} \pm 2 \times 2 \cdot 19 \times 4 \times \cos \theta\right)^{\frac{1}{2}}$, from which $\cos \theta=$ -0.8156 , and $\theta=144 \frac{1}{2}^{\circ}$.

6-Nitroquinoline in benzene at 25°.

$f_{1} .10^{8}$	0	$1843 \cdot 13$	$4582 \cdot 86$	$6000 \cdot 13$	$7667 \cdot 41$
$M_{1} f_{1}+M_{2} f_{2}$	78	$78 \cdot 1769$	$78 \cdot 4399$	78.5760	78.7361
-	$2 \cdot 2725$	$2 \cdot 3165$	$2 \cdot 3822$	$2 \cdot 4165$	$2 \cdot 4559$
d	$0 \cdot 8738$	$0 \cdot 87507$	$0 \cdot 87699$	0.87794	$0 \cdot 87908$
$P_{1} f_{1}+P_{2} f_{2}$	26.585	27.2475	$28 \cdot 2117$	28.7054	$29 \cdot 2651$
$P_{2} f_{2} \ldots \ldots .$.	26.585	26.5360	26.4632	26.4255	26.3812
$P_{1} f_{1}$	-	0.7115	$1 \cdot 7485$	$2 \cdot 2799$	2•8839
P_{1}	-	386.04	381.53	$379 \cdot 98$	376-13
$n{ }^{1}$	$1 \cdot 49733$	$1 \cdot 49781$	$1 \cdot 49854$	379	37
n^{2}	$2 \cdot 24200$	$2 \cdot 24343$	$2 \cdot 24562$	-	
$R_{1} f_{1}+R_{2} f_{2}$	$26 \cdot 1357$	26.1782	26.2415	-	—
$R_{2} f_{2} \ldots \ldots \ldots$.	26.1357	26.0875	26.0159	-	-
$R_{1} f_{1}$	-	0.0907	$0 \cdot 2256$	-	-
R_{1}	-	$49 \cdot 2$	$49 \cdot 2$	-	-

Whence extrapolated value of P_{1} for $f_{1}=0$ is $389 \cdot 1$ c.c.; $\left[R_{L}\right]_{\mathrm{D}}=49 \cdot 2$ c.c.; therefore $\mu=0 \cdot 220$ $(389 \cdot 1-49 \cdot 2)^{\frac{1}{2}}=4 \cdot 12$. Also, $4 \cdot 12=\left(4^{2}+19^{2} \pm 2 \times 2 \cdot 19 \times 4 \times \cos \theta\right)^{\frac{1}{2}}$, from which $\cos \theta=$ -0.2182 , and $\theta=102 \frac{1}{2}^{\circ}$.

8-Nitroquinoline in benzene at 25°.

$f_{1} \cdot 10^{6}$	0	880.543	2312.94	$7009 \cdot 21$	11614.2
$M_{1} f_{1}+M_{2} f_{2}$	78	78.0846	$78 \cdot 2221$	$78 \cdot 6729$	$79 \cdot 1152$
ϵ..............	$2 \cdot 2725$	$2 \cdot 3117$	$2 \cdot 3788$	$2 \cdot 5975$	$2 \cdot 8076$
d	$0 \cdot 87380$	$0 \cdot 87445$	$0 \cdot 87547$	$0 \cdot 87880$	$0 \cdot 88177$
$P_{1} f_{1}+P_{2} f_{2}$	26.5850	$27 \cdot 1660$	$28 \cdot 1344$	31-1068	33.7348
$P_{2} f_{2}$	26.5850	26.5616	26.5235	26.3987	$26 \cdot 2763$
$P_{1} f_{1}$	-	$0 \cdot 6044$	1•6109	4•7081	$7 \cdot 4585$
P_{1}	-	686.38	696.48	$671 \cdot 70$	$642 \cdot 19$
n	$1 \cdot 49733$	-	$1 \cdot 49791$	-	$1 \cdot 49998$
n^{2}	$2 \cdot 24200$	--	$2 \cdot 24372$	-	$2 \cdot 24994$
$R_{1} f_{1}+R_{2} f_{2}$	$26 \cdot 1357$	-	$26 \cdot 1858$	-	$26 \cdot 3858$
$R_{2} f_{2}$	26.1357	-	$26 \cdot 0753$	-	$25 \cdot 8323$
$R_{1} f_{1}$		-	$0 \cdot 1105$	-	$0 \cdot 5535$
R_{1}	-	--	47•77	-	$47 \cdot 66$

8-Nitroquinoline in benzene at 45°.

$\boldsymbol{\epsilon}$.	$2 \cdot 2330$	$2 \cdot 2694$	$2 \cdot 3282$	$2 \cdot 5276$	$2 \cdot 7177$
d	$0 \cdot 8521$	$0 \cdot 85355$	$0 \cdot 85450$	0.85777	$0 \cdot 86097$
$P_{1} f_{1}+P_{2} f_{2}$	26.6640	$27 \cdot 2003$	28.0919	30.9456	$33 \cdot 4566$
$P_{2} f_{2}$	$26 \cdot 6640$	26.6405	$26 \cdot 6023$	$26 \cdot 4771$	26.3544
$P_{1} f_{1}$	-	$0 \cdot 5598$	$1 \cdot 4896$	$4 \cdot 4685$	7-1022
P_{1}	-	$635 \cdot 74$	644.02	$637 \cdot 51$	611.51

Whence extrapolated value of P_{1} for $f_{1}=0$ is 713 c.c. at 25° and 676 c.c. at 45°; $\left[R_{L}\right]_{\mathrm{D}}=47.8$ c.c.; therefore $\mu=0.220(713-47.7)^{\frac{1}{2}}=5 \cdot 67$. Alternatively, we have, by substituting in $P=A+B / T$, $B=175313 \cdot 4$, whence $\mu=5 \cdot 33$. Also, $5 \cdot 67=\left(2 \cdot 19^{2}+4^{2} \pm 2 \times 2.19 \times 4 \times \cos \theta\right)^{\frac{1}{2}}$, from which $\cos \theta=0.6480$, i.e., $\theta=49 \frac{1}{2}^{\circ}$.
densities of the solutions were measured at the same temperatures. From these data the molecular polarisations and refractivities were calculated from the well-known modifications of the Clausius-Mosotti and the Lorenz-Lorentz equation. The significant data are in the foregoing tables, in which the symbols M, P, R, refer respectively to the molecular weights, polarisations, and refractions of the components, and f to their mol.-fractions in the solutions, the subscripts 1 and 2 applying to solute and solvent; ε, d, and n are respectively the dielectric constants, densities, and refractive indices of the solutions, and μ the dipole moments of the solutes.

The Orientation of Claus and Hoffmann's x-Nitroisoquinoline.

Claus and Hoffmann showed (J. pr. Chem., 1893, 47, 252) that solid isoquinolinium nitrate or sulphate could be nitrated to give in high yield a mononitro-derivative, m. p. 110°, permanganate oxidation of which produced α-nitrophthalic acid, showing that either 5 - or 8 -substitution had taken place. No experimental decision on this point was made, although the authors clearly favoured the latter constitution. This ambiguity cannot be resolved by any conclusive theoretical arguments, but the 5 -nitro-structure would be more consistent with analogy. The dipole moments of isoquinoline, of its 1 -chloro-, and of its unoriented nitro-derivative were therefore measured by the same procedure as above.

Preparation of Materials.-The isoquinoline used, after being twice partly frozen and separated from the liquid of lower b. p., had m. p. 24°. We are indebted to Dr. F. M. Hamer for our specimen of 1 -chloroisoquinoline (cf. Fisher and Hamer, J., 1934, 1908). The benzene was that employed previously.

$f_{1} \cdot 10^{6}$	0	$21012 \cdot 2$	31999.7	$43332 \cdot 9$	$65041 \cdot 1$
$M_{1} f_{1}+M_{2} f_{2}$	78	$79 \cdot 0716$	$79 \cdot 6320$	$80 \cdot 2100$	$81 \cdot 3171$
ϵ..............	$2 \cdot 2725$	2.476	$2 \cdot 580$	$2 \cdot 681$	2.892
d	$0 \cdot 8738$	0.88051	0.88370	0.88710	0.89361
$P_{1} f_{1}+P_{2} f_{2}$	26.585	29.6129	31.0866	$32 \cdot 4702$	$35 \cdot 1951$
$P_{2} f_{2} \ldots \ldots \ldots$.	26.585	26.0264	$25 \cdot 7343$	25.4330	$24 \cdot 8559$
$P_{1} f_{1}$	-	3.5865	$5 \cdot 3523$	$7 \cdot 0372$	10.3392
P_{1} (c.c.)	-	$170 \cdot 68$	$167 \cdot 26$	$162 \cdot 40$	158.96

Whence extrapolated value for $f_{1}=0$ is 175.8 c.c.; $\left[R_{L}\right]_{\mathrm{D}}=41.5$ c.c. (Bruhl, Z. physikal. Chem., 1895, 16, 193) ; therefore $\mu=0.22(175.8-41 \cdot 5)^{\frac{1}{2}}=2 \cdot 549$.

1-Chloroisoquinoline in benzene at 25°.

$f_{1} .10^{6}$	0	12308.6	17198.3	$25162 \cdot 3$	$31991 \cdot 0$
$M_{1} f_{1}+M_{2} f_{2}$	78	79.0524	$79 \cdot 4705$	$80 \cdot 1514$	80.7352
${ }_{1}{ }_{1}+M_{2}$	$2 \cdot 2725$	$2 \cdot 4752$	$2 \cdot 5594$	$2 \cdot 6935$	$2 \cdot 8122$
d	0.87380	0.88072	0.88342	0.88794	0.89205
$P_{1} f_{1}+P_{2} f_{2}$	26.585	29.5880	30.7672	32.5698	34.0829
$P_{2} f_{2} \ldots \ldots .$.	26.585	$26 \cdot 2578$	$26 \cdot 1278$	25.9161	$25 \cdot 7345$
$P_{1} f_{1}$	-	3.3302	$4 \cdot 6394$	$6 \cdot 6537$	$8 \cdot 3484$
P_{1}	-	$270 \cdot 56$	$269 \cdot 76$	$264 \cdot 43$	$260 \cdot 96$
n	1.49733	$1 \cdot 49993$	-	-	-
n^{2}	$2 \cdot 24200$	$2 \cdot 24979$	-	-	-
$R_{1} f_{1}+R_{2} f_{2}$	$26 \cdot 1357$	26.3965	-	-	-
$R_{2} f_{2} \ldots \ldots \ldots$.	26.1357	$25 \cdot 8140$	-	-	-
$R_{1} f_{1}$	-	$0 \cdot 5825$	-	-	-
$\left[R_{1}\right]_{\text {D }}$	-	47-32	-	-	-

Whence extrapolated value of P_{1} for $f_{1}=0$ is $276 \cdot 4$ c.c.; therefore $\mu=0 \cdot 22(276 \cdot 4-47 \cdot 3)^{\frac{1}{2}}=3 \cdot 33$. Also $3.33=\left(1.52^{2}+2.52^{2} \pm 2 \times 1.52 \times 2.52 \cos \theta\right)^{\frac{1}{2}}$; whence $\cos \theta=0.3170$ and $\theta=71 \frac{1}{2}^{\circ}$.
x -Nitroisoquinoline in benzene at 25°.

$f_{1} \cdot 10^{6}$	0	2616.98	$3500 \cdot 21$	$4540 \cdot 03$	$5182 \cdot 82$
$M_{1} f_{1}+M_{2} f_{2}$	78	$78 \cdot 2513$	$78 \cdot 3360$	$78 \cdot 4358$	$78 \cdot 4976$
ϵ	$2 \cdot 2725$	$2 \cdot 3245$	$2 \cdot 3420$	$2 \cdot 3622$	$2 \cdot 3751$
d	$0 \cdot 8738$	$0 \cdot 87550$	$0 \cdot 87609$	0.87678	$0 \cdot 87722$
$P_{1} f_{1}+P_{2} f_{2}$	26.585	$27 \cdot 3748$	$27 \cdot 6359$	27.9357	$28 \cdot 1260$
$P_{2} f_{2}$	26.585	26.5154	26.4919	26.4643	26.4472
$P_{1} f_{1}$	-	$0 \cdot 8594$	1•1439	$1 \cdot 4714$	$1 \cdot 6788$
P_{1} (c.c.)	-	$328 \cdot 4$	$326 \cdot 8$	$324 \cdot 1$	323.9
n	$1 \cdot 49733$	$1 \cdot 49785$	-	-	$1 \cdot 49837$
n^{2}	$2 \cdot 24200$	$2 \cdot 24356$	-	-	$2 \cdot 24511$
$R_{1} f_{1}+R_{2} f_{2}$	$26 \cdot 1357$	$26 \cdot 1921$	-	-	$26 \cdot 2462$
$R_{2} f_{2} \ldots \ldots \ldots$.	26.1357	$26 \cdot 0673$	-	-	$26 \cdot 0003$
$R_{1} f_{1}$	-	0. 1248	-	-	$0 \cdot 2460$
R_{1} (c.c.)	-	$47 \cdot 67$	-	-	$47 \cdot 46$

Whence extrapolated value for $f_{1}=0$ is $333 \cdot 0$ c.c. ; $\left[R_{L}\right]_{\mathrm{D}}=47.7$ c.c.; therefore $\mu=0.22(333 \cdot 0-47 \cdot 7)^{\frac{1}{2}}=$ 3.72. Substitution in $\mu_{\text {Resultant }}=\sqrt{\mu_{1}^{2}}+\mu^{2}+2 \mu_{1} \mu_{2} \cos \theta$ gives $3.72^{2}=2.55^{2}+4^{2} \pm 2 \cdot 2 \times 55 \cdot 4$ $\cos \theta$, whence $\cos \theta=-0.4247$, i.e., $\theta=c a .115^{\circ}$.
x -Nitroisoquinoline. This was first obtained as by Claus and Hoffmann (loc. cit.), viz., by addition of the solid nitrate to an excess of well-stirred concentrated sulphuric acid. Later, the following variation was adopted : isoquinoline (43 g .) was dissolved in sulphuric acid (200 c.c.) directly; considerable heat was evolved, and the solution was cooled to 0°, stirred, and potassium nitrate (35 g .) in sulphuric acid ($200 \mathrm{c} . \mathrm{c}$.) dropped in during 2 hours. After being kept below 50° for 6 hours, the reaction mixture was poured on ice and neutralised by ammonia. Filtration, etc., afforded the required nitro-derivative in quantitative yield (55 g .). The dried substance, crystallised from benzene, had m. p. 110°, as stated by the German authors.

Discussion.-Before discussion of the data, the direction of operation of the moment in the unsubstituted base must be decided. This can be fixed by the consideration of the dipole moment of an isoquinoline derivative of known orientation, and for this purpose 1-chloroisoquinoline was used. The dipole moment of this compound has been estimated at $3 \cdot 33$, a figure which (with $\mu \mathrm{C}-\mathrm{Cl}=1.52^{*}$) implies that the isoquinoline vector makes an angle of $71 \frac{1}{2}^{\circ}$ with the $\mathrm{C}-\mathrm{Cl}$ (vertical) direction. Hence the isoquinoline moment has a finite component along the $5: 8$-axis, with the negative end in the direction of the 8 -carbon atom.

The substance in question can now be formulated, for consideration of 8 -nitroisoquinoline shows that the component moments of the nitro-group and the isoquinoline nucleus should make an angle of approximately 71°, whereas with the 5 -nitro-structure the angle subtended by the vectors should be of the order 109°. The found value is 115°. Hence, we suggest that Claus and Hoffmann's compound should be oriented as 5 -nitroisoquinoline.

The authors thank Professor G. M. Bennett for a gift of dimethylquinoline, Professor F. G. Donnan for permission to use apparatus belonging to the Physicochemical Department, and Professor C. K. Ingold for much helpful discussion.

